Zhangyang Gao (高张阳)
Ph.D Candidate, Zhejiang University & Westlake University
Center for Artificial Intelligence Research and Innovation (CAIRI)
Westlake University
Location: E2-223, Westlake University, Dunyu Road #600, Hangzhou, Zhejiang, China
Email: gaozhangyang@westlake.edu.cn
[Google Scholar]
[GitHub]
[ResearchGate]
[ORCID]
Welcome to contacting me about research or internship by emails or WeChat (simpler_yet_better).
I am eagerly seeking a postdoctoral position beginning in August 2025!
UniIF: Unified Molecule Inverse Folding
Zhangyang Gao, Jue Wang, Cheng Tan, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, Stan Z. Li
NeurIPS, 2024
[PDF]
[Github]
[BibTeX]
A Graph is Worth $ K $ Words: Euclideanizing Graph using Pure Transformer
Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, Stan Z.Li
ICML, 2024
[PDF]
[Github]
[BibTeX]
KW-Design: Pushing the Limit of Protein Design via Knowledge Refinement
Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, Stan Z.Li
ICLR, 2024
[PDF]
[Github]
[BibTeX]
Proteininvbench: Benchmarking protein inverse folding on diverse tasks, models, and metrics
Zhangyang Gao, Cheng Tan, Yijie Zhang, Xingran Chen, Lirong Wu, Stan Z.Li
NeurIPS, 2023
[PDF]
[Github]
[BibTeX]
PiFold: Toward effective and efficient protein inverse folding
Zhangyang Gao, Cheng Tan, Stan Z.Li
ICLR, 2023 (Spotlight)
[PDF]
[Github]
[BibTeX]
Simvp: Simpler yet better video prediction
Zhangyang Gao, Cheng Tan, Lirong Wu, Stan Z.Li
CVPR, 2022
[PDF]
[Github]
[BibTeX]
Foldtoken: Learning protein language via vector quantization and beyond
Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang, Lirong Wu, Stan Z.Li
Arxiv, 2024
[PDF]
[BibTeX]
FoldToken2: Learning compact, invariant and generative protein structure language
Zhangyang Gao, Cheng Tan, Stan Z.Li
Arxiv, 2024
[PDF]
[Github]
[BibTeX]
FoldToken3: Fold Structures Worth 256 Words or Less
Zhangyang Gao, Cheng Tan, Stan Z.Li
Arxiv, 2024
[PDF]
[BibTeX]
FoldToken4: Consistent & Hierarchical Fold Language
Zhangyang Gao, Cheng Tan, Stan Z.Li
Arxiv, 2024
[PDF]
[BibTeX]
General Point Model Pretraining with Autoencoding and Autoregressive
Zhe Li, Zhangyang Gao*, Cheng Tan, Bocheng Ren, Laurence T Yang, Stan Z.
CVPR, 2024
[PDF]
[BibTeX]
Cross-Gate MLP with Protein Complex Invariant Embedding Is a One-Shot Antibody Designer
Cheng Tan, Zhangyang Gao*, Lirong Wu, Jun Xia, Jiangbin Zheng, Xihong Yang, Yue Liu, Bozhen Hu, Stan Z.
AAAI, 2024
[PDF]
[Github]
[BibTeX]
Co-supervised Pre-training of Pocket and Ligand
Zhangyang Gao, Cheng Tan, Jun Xia, Stan Z.
ECML, 2023
[PDF]
[BibTeX]
Target-aware molecular graph generation
Cheng Tan, Zhangyang Gao*, Stan Z.
ECML, 2023
[PDF]
[BibTeX]
Global-context aware generative protein design
Cheng Tan, Zhangyang Gao*, Jun Xia, Bozhen Hu, Stan Z.
ICASSP, 2023
[PDF]
[Github]
[BibTeX]
Temporal attention unit: Towards efficient spatiotemporal predictive learning
Cheng Tan, Zhangyang Gao*, Lirong Wu, Yongjie Xu, Jun Xia, Siyuan Li and Li, Stan Z.
CVPR, 2023
[PDF]
[Github]
[BibTeX]
Conditional local convolution for spatio-temporal meteorological forecasting
Haitao Lin, Zhangyang Gao*, Yongjie Xu, Ling Li, Stan Z.Li
AAAI, 2021
[PDF]
[Github]
[BibTeX]
Hyperspherical consistency regularization
Cheng Tan, Zhangyang Gao*, Lirong Wu, Siyuan Li, Stan Z.Li
CVPR, 2022
[PDF]
[Github]
[BibTeX]
Towards Robust De Novo Peptide Sequencing in Proteomics against Data Biases
Jun Xia, Shaorong Chen, Jingbo Zhou, Xiaojun Shan, Wenjie Du, Zhangyang Gao, Cheng Tan, Bozhen Hu, Jiangbin Zheng, Stan Z. Li
NeurIPS, 2024
[PDF]
[BibTeX]
ProtGO: Function-Guided Protein Modeling for Unified Representation Learning
Bozhen Hu, Cheng Tan, Yongjie Xu, Zhangyang Gao, Jun Xia, Lirong Wu, Stan Z. Li
NeurIPS, 2024
[PDF]
[BibTeX]
DiscoGNN: A Sample-Efficient Framework for Self-Supervised Graph Representation Learning
Jun Xia, Shaorong Chen, Yue Liu, Zhangyang Gao, Jiangbin Zheng, Xihong Yang, Stan.Z
ICDE, 2024
[PDF]
[BibTeX]
PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for Efficient and Generalizable Compound-Protein Interaction Prediction
Lirong Wu, Yufei Huang, Chen Tan, Zhangyang Gao, Bozhen Hu, Haitao Lin, Zicheng Liu, Stan.Z
AAAI, 2024
[PDF]
[Github]
[BibTeX]
Enhancing human-like multimodal reasoning: a new challenging dataset and comprehensive framework
Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Siyuan Li, Bihui Yu, Ruifeng Guo & Stan.Z
Neural Computing and Applications, 2024
[PDF]
[BibTeX]
Protein 3D Graph Structure Learning for Robust Structure-Based Protein Property Prediction
Yufei Huang, Siyuan Li, Lirong Wu, Jin Su, Haitao Lin, Odin Zhang, Zihan Liu, Zhangyang Gao, Jiangbin Zheng, Stan.Z
AAAI, 2024
[PDF]
[BibTeX]
A Teacher-Free Graph Knowledge Distillation Framework With Dual Self-Distillation
Lirong Wu, Haitao Lin, Zhangyang Gao, Guojiang Zhao, Stan.Z
TNNLS, 2024
[PDF]
[Github]
[BibTeX]
Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion Bridge
Yufei Huang, Odin Zhang, Lirong Wu, Cheng Tan, Haitao Lin, Zhangyang Gao, Siyuan Li, Stan.Z
ICML, 2024 (Spotlight)
[PDF]
[BibTeX]
Mlip: Enhancing medical visual representation with divergence encoder and knowledge-guided contrastive learning
Zhe Li, Laurence T. Yang, Bocheng Ren, Xin Nie, Zhangyang Gao, Cheng Tan, Stan Z.
CVPR, 2024
[PDF]
[BibTeX]
A Survey on Generative Diffusion Models
Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, Stan Z.
TKDE, 2024
[PDF]
[Github]
[BibTeX]
Openstl: A comprehensive benchmark of spatio-temporal predictive learning
Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, Stan Z.Li
NeurIPS, 2023
[PDF]
[Github]
[BibTeX]
Mole-bert: Rethinking pre-training graph neural networks for molecules
Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, Stan Z.Li
ICLR, 2023
[PDF]
[Github]
[BibTeX]
Beyond homophily and homogeneity assumption: Relation-based frequency adaptive graph neural networks
Lirong Wu, Haitao Lin, Bozhen Hu, Cheng Tan, Zhangyang Gao, Zicheng Liu, Stan Z.Li
TNNLS, 2023
[PDF]
[Github]
[BibTeX]
Self-supervised learning on graphs: Contrastive, generative, or predictive
Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, Stan Z.Li
TKDE, 2021
[PDF]
[Github]
[BibTeX]
Program committee member | Reviewer